Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
肾脏是人体的重要器官。它保持体内平衡并通过尿液去除有害物质。肾细胞癌(RCC)是肾癌最常见的形式。大约90%的肾脏癌归因于RCC。最有害的RCC类型是清晰的细胞肾细胞癌(CCRCC),占所有RCC病例的80%。需要早期和准确的CCRCC检测,以防止其他器官进一步扩散该疾病。在本文中,进行了详细的实验,以确定可以在不同阶段诊断CCRCC的重要特征。 CCRCC数据集从癌症基因组图集(TCGA)获得。考虑了从8种流行特征选择方法获得的特征顺序的新型相互信息和集合的特征排名方法。通过使用2个不同的分类器(ANN和SVM)获得的总体分类精度来评估所提出方法的性能。实验结果表明,所提出的特征排名方法能够获得更高的精度(分别使用SVM和NN分别使用SVM和NN),与现有工作相比,使用SVM和NN分别使用SVM和NN进行分类。还要注意的是,在现有TNM系统(由AJCC和UICC提出的)提到的3个区分特征中,我们提出的方法能够选择其中两个(肿瘤的大小,转移状态)作为顶部 - 大多数。这确立了我们提出的方法的功效。
translated by 谷歌翻译
机器学习开始在一系列环境应用中提供最先进的性能,例如水文流域中的流量预测。但是,由于主要的水文工艺的可变性,在实践中建立准确的大规模模型在实践中仍然具有挑战性,这是通过一组与过程相关的盆地特征捕获的。现有的盆地特征遭受了噪音和不确定性的影响,以及许多其他事情,这会对模型性能产生不利影响。为了应对上述挑战,在本文中,我们提出了一种新颖的知识引导的自学学习(KGSSL)逆框架,以从驱动程序和响应数据中提取系统特征。即使特征被损坏,这个首先的框架即使在特征被损坏的情况下也达到了强大的性能。我们表明,KGSSL为骆驼的流量建模(大型研究的流域属性和气象学)实现了最新的结果,这是一个广泛使用的水文基准数据集。具体而言,KGSSL在重建特性中最多优于其他方法16 \%。此外,我们表明KGSSL比基线方法相对强大,并且在插入KGSSL推断的特征时,基线模型的表现优于35 \%。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Radiance Fields (RF) are popular to represent casually-captured scenes for new view generation and have been used for applications beyond it. Understanding and manipulating scenes represented as RFs have to naturally follow to facilitate mixed reality on personal spaces. Semantic segmentation of objects in the 3D scene is an important step for that. Prior segmentation efforts using feature distillation show promise but don't scale to complex objects with diverse appearance. We present a framework to interactively segment objects with fine structure. Nearest neighbor feature matching identifies high-confidence regions of the objects using distilled features. Bilateral filtering in a joint spatio-semantic space grows the region to recover accurate segmentation. We show state-of-the-art results of segmenting objects from RFs and compositing them to another scene, changing appearance, etc., moving closer to rich scene manipulation and understanding. Project Page: https://rahul-goel.github.io/isrf/
translated by 谷歌翻译
Reduced system dependability and higher maintenance costs may be the consequence of poor electric power quality, which can disturb normal equipment performance, speed up aging, and even cause outright failures. This study implements and tests a prototype of an Online Sequential Extreme Learning Machine (OS-ELM) classifier based on wavelets for detecting power quality problems under transient conditions. In order to create the classifier, the OSELM-network model and the discrete wavelet transform (DWT) method are combined. First, discrete wavelet transform (DWT) multi-resolution analysis (MRA) was used to extract characteristics of the distorted signal at various resolutions. The OSELM then sorts the retrieved data by transient duration and energy features to determine the kind of disturbance. The suggested approach requires less memory space and processing time since it can minimize a large quantity of the distorted signal's characteristics without changing the signal's original quality. Several types of transient events were used to demonstrate the classifier's ability to detect and categorize various types of power disturbances, including sags, swells, momentary interruptions, oscillatory transients, harmonics, notches, spikes, flickers, sag swell, sag mi, sag harm, swell trans, sag spike, and swell spike.
translated by 谷歌翻译
Arbitrary Style Transfer is a technique used to produce a new image from two images: a content image, and a style image. The newly produced image is unseen and is generated from the algorithm itself. Balancing the structure and style components has been the major challenge that other state-of-the-art algorithms have tried to solve. Despite all the efforts, it's still a major challenge to apply the artistic style that was originally created on top of the structure of the content image while maintaining consistency. In this work, we solved these problems by using a Deep Learning approach using Convolutional Neural Networks. Our implementation will first extract foreground from the background using the pre-trained Detectron 2 model from the content image, and then apply the Arbitrary Style Transfer technique that is used in SANet. Once we have the two styled images, we will stitch the two chunks of images after the process of style transfer for the complete end piece.
translated by 谷歌翻译